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Abstract

As disk arrays become widely used, tools for understanding and analyzing their performance
become increasingly important. In particular, performance models can be invaluable in both
configuring and designing disk arrays. Accurate analytic performance models are desirable over
other types of models because they can be quickly evaluated, are applicable under a wide range
of system and workload parameters, and can be manipulated by a range of mathematical tech-
niques. Unfortunately, analytic performance models of disk arrays are difficult to formulate due
to the presence of queuing and fork-join synchronization; a disk array request is broken up into
independent disk requests which must all complete to satisfy the original request. In this paper,
we develop, validate and apply an analytic performance model for disk arrays. We derive simple
equations for approximating their utilization, response time and throughput. We then validate
the analytic model via simulation and investigate the accuracy of each approximation used in
deriving the analytic model. Finally, we apply the analytic model to derive an equation for the
optimal unit of data striping in disk arrays.

1 Introduction

In recent years, improvements in microprocessor performance has greatly outpaced improvements

in I/O performance. If the trend continues, future improvements in microprocessor performance

will be wasted as computer systems become increasingly I/O bound. To overcome the impending

I/O crisis, several researchers [7,8,10,12,13,15] have proposed the use of disk arrays that stripe data

across multiple disks and provide improved I/O performance by using parallelism to increase data

transfer rates and by servicing multiple I/O requests concurrently.

Given the important role disk arrays will play in the I/O systems of tomorrow, tools for un-

derstanding their performance become increasingly important. In particular, performance models,

combined with a thorough understanding of an installation's workload, will be invaluable in both

configuring and designing disk arrays. In general, accurate analytic performance models are de-

sirable over other types of models, such as empirical and simulation, because they can be quickly

evaluated, are applicable under a wide range of system and workload parameters, and can be ma-

nipulated by a range of mathematical techniques. Even when analytic models are not directly

applicable to a particular system or workload, they are frequently useful for quickly analyzing

general properties of the system, stimulating intuition and furthering understanding.

Unfortunately, analytic performance models of disk arrays are difficult to formulate due to the

presence of queuing and fork-join synchronization; a disk array request is broken up into inde-

pendent disk requests which must all complete to satisfy the disk array request. Exact analytic



solutionsfor the two serverfork-join queuegivenPoissonarrivalsand independentservicetimes
currentlyexist [1,5]but the k-server fork-join queue remains unsolved. Other related work in the

field falls into four primary categories: (1) simulation studies, (2) analytic models that ignore queue-

ing effects, (3) analytic models that ignore fork-join synchronization and (4) restricted queueing

models that deal with fork-join synchronization using specialized techniques not easily extended to

modeling disk arrays. Most analytic queueing studies deal with general queueing systems rather

than disk arrays in particular. The following lists previous work that is representative of the field.

Kim [8] investigates the performance of n independent disks without data striping versus n

synchronized disks with data striping; the n disks are essentially equivalent to a single disk

with n times higher data transfer rate. She derives equations for response time assuming each

disk is an M/G/1 system. Because the disks are completely synchronized, she avoids fork-join

synchronization altogether.

Livny [10] investigates the performance of declustering, where data is striped in 26KB units,

versus clustering, where data is not striped, over a range of transaction workloads via simula-
tion.

Reddy [14] investigates the performance tradeoffbetween synchronized fine-grained data strip-

ing versus asynchronous coarse-grained data striping via simulation. He also proposes and

investigates hybrid schemes that combine aspects of synchronized fine-grained data striping

and asynchronous coarse-grained data striping.

Chen [4] derives empirical rules for optimally selecting the unit of data striping in disk arrays
over a range of workloads via simulation.

Salem and Garcia-Molina [15]; Kim and Tantawi [9]; Bitton and Gray [2] derive minimum

response time formulas (no queueing) for asynchronous disk arrays.

Patterson, Gibson and Katz [13] derive analytic formulas for maximum throughput in RAID's

(Redundant Array of Inexpensive Disks) which are subsequently verified by Chen [3] via
measurement.

• Heidelberger and Trivedi [6] formulates an analytic model for systems with forks but no joins.

In this paper, we develop, validate and apply an analytic performance model for disk arrays. Our

model is different from previous analytic models of disk arrays mentioned above for the following

reasons. First, we use a closed queueing model with a fixed number of processes whereas previous

analytic models of disk arrays have used open queueing models with Poisson arrivals. A closed model

more accurately models the synchronous I/O behavior of scientific, time-sharing and distributed

systems. In such systems, processes tends to wait for previous I/O requests to complete before

issuing new I/O requests, whereas in transaction based systems, I/O requests are issued at random

points in time regardless of whether the previous I/O requests have completed. Second, to the best

of our knowledge, this is the first analytic model for disk arrays that handles both the queueing at

individual disks and the fork-join synchronization introduced by data striping. Previous analytic

models that handle both queueing and fork-join synchronization cannot easily be applied to disk

arrays because they assume service times across servers (disks) are independent whereas in disk
arrays, they are very much dependent.
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Figure 1: Data Striping.

In the following sections, we first derive an exact expression for the utilization of the model

system. Because the exact expression contains parameters that are difficult or impossible to com-

pute, we either analytically approximate or empirically calibrate the difficult parameters to make

the expression more tractable. From the resulting approximate equation for utilization, we derive

equations for response time and throughput. We then validate the analytic model via simulation

and investigate the accuracy and sensitivity of each approximation used in deriving the analytic

model. Finally, we apply the analytic model to derive an equation for determining the optimal unit

of data striping in disk arrays.

2 Definitions

Disk arrays provide high I/0 performance by striping data over multiple disks. High performance

is achieved by servicing multiple I/O requests concurrently and by using more than one disk to

service a single request in a parallel manner.

Figure i illustrates the basic disk array of interest and illustrates the terms stripe unit and data

stripe which we formally define as follows:

Stripe unit is the unit of data interleaving, that is, the amount of data that is placed on a disk

before data is placed on the next disk. Stripe units typically range from a sector to a track in

size (512 bytes to 64 kilobytes). Figure 1 illustrates a disk array with five disks with the first

ten stripe units labeled.

Data stripe is a sequence of logically consecutive stripe units. A logical I/O request to a disk

array corresponds to a data stripe. Figure I illustrates a data stripe consisting of four stripe

units spanning stripe units three through six.

3 The Analytic Model

In this section, we derive equations to approximate the performance of disk arrays. Our approach

is to derive the expected utilization of a given disk in the disk array. Because we are modeling

a closed system where each disk plays a symmetric role with respect to each other, knowing the

expected utilization of a given disk in the system will allow us to compute the system's throughput

and response time.
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Figure 2: Closed Queuing Model for Disk Arrays.

3.1 The Model System

Consider the closed queueing system illustrated by Figure 2. The system consists of L processes,

each of which issues, one at a time, an array request of size n stripe units. Each array request

is broken up into n disk requests and the disk requests are queued round-robin starting from a

randomly chosen disk. Each disk services a single disk request at a time in a FIFO manner. When

all of the disk requests corresponding to an array request are serviced, the process that issued the

array request issues another array request, repeating the cycle. Note that two array requests may

partially overlap on some of the disks, resulting in complex interactions. We sometimes refer to

array requests simply as requests. The parameters of the above system are as follows:

L = Number of processes issuing requests.

N = Number of disks.

n _ Request size (number of disks/stripe-units accessed per request);
n<N.

S = Service time of a given disk request.

In the derivation of the analytic model, we will assume that L and n are fixed. We will also assume

that the processes do nothing but issue I/O requests.
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Figure 3: Time-llne of Events at a Given Disk. After the disk request finishes service at time t2,

M = 2 array request that do not access the given disk are issued at times t3 and t4 before an array

request that accesses the given disk is issued at time ts. The disk remains idle for a time period of

W = ro + rl + r_.

3.2 The Expected Utilization

In derivating the expected utilization of the model system, the following definitions will prove
useful:

U - Expected utilization of a given disk.

R - Response time of a given array request.

W _= Disk idle (wait) time between disk request servicings.

Q - Queue length at a given disk.

P0 - Probability that the queue at a given disk is empty

when the disk finishes servicing a disk request.

p _ Probability that a request will access a given disk;

n/N.

If we visualize the activity at a given disk as an alternating sequence of busy periods of length

S and idle periods of length W, the expected utilization of a given disk is,

E(S)

u = E(s)+ E(w) (1)

Idle periods of length zero can occur and imply that another disk request is already wa_ting for

service, Q > o, when the current disk request finishes service.

Let r0 denote the time between the end of service of a given disk request and the issuing of

a new array request into the system. Let ri, i E {1,2,...} denote the successive time intervals

between successive issues of array requests numbered relative to r0. Let M denote the number of

array requests that are issued after a given disk finishes a disk request until, but excluding, the

array request that accesses the given disk. Since each array request has probability p of accessing

a given disk, M is geometrically distributed and E(M) = lip- 1. Figure 3 illustrates the above
terms.
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By conditioningon the queuelengthat the time a diskrequestfinishesservice,wecanwrite,

E(W) = P(Q > O)E(WJQ > O) + P(Q = O)E(WIQ = O),
M

E(W) = (1-p0)0+p0E(Ei=0rl),

E(W) = po(E(ro)+

Substituting into Equation 1 we have,

E(S)

U = E(S)+ po(S(ro)+ E(_,M_ ri)) (2)

Equation 2 is an exact equation for the expected utilization of the model system.

3.3 Approximating the Expected Utilization

In the previous section, we formulated an exact equation, Equation 2, for the expected utilization

of the model system. Unfortunately, the exact equation consists of terms which are very difficult if

not impossible to compute. In this section, we approximate components of Equation 2 to make it
analytically tractable.

To simplify Equation 2, we make the following assumption: E(_,M1 r,) __ E(M)E(r) =
(1/p- 1)E(R)/L. From Little's Law, we know that the average time between successive issues

of array requests is E(R)/L; thus, the above approximation would be exact if r,', i e {1,2,...) were

independently distributed with a common mean of E(R)/L. For the moment, we will take the

above approximation as given, but later show via simulation that the above is an extremely good
approximation. Thus, we can write,

z(s)
u E(s) + po(Z( o)+ (1/p- (3)

Given the above approximation, it is natural to assume the following restriction on E(r0) solely
for the purpose of providing an intuitive feel for the range of r0:

0 < E(r0) < (4)

The first inequality must hold since r0 >_ 0 whereas the second is just an intuitive, almost arbitrary,

restriction. The following observations concerning E(ro) are evident:

• E(ro) = 0 implies that disk requests associated with the same array request finish at the same

time and thus an array request is issued immediately whenever any disk request finishes.

• E(ro) = 0 when n = 1, that is, when each array request consists of a single disk request. In this

case, the completion of each disk request corresponds to the completion of the corresponding

array request and, thus, the process that issued the disk request will immediately issue another
array request.

• E(ro) _- 0 when n = N, that is, when an array request always uses all the disks. In this

case, disk requests associated with the same array request will tend to finish at close to the

same time because all of the disks will be in very similar states and operate in a lock step
fashion since disk service times are deterministic and disk requests across disks will be almost
identical.



Wewill find it convenientto expressE(ro) as a multiple of E(R)/L; thus, we introduce the pa-

rameter 7 as E(ro) = "IE(R)/L, where Restriction 4 implies 0 < 3' _< 1. Later, we will empirical

calibrate _/. For now, we know that 3, = 0 when n = 1 and 7 -- 0 when n = N. Rewriting

Equation 3 in terms of 7 we have,

E(S)
U E(S)+ (5)

The following is the key approximation:

poE(R)/E(S)= 1. (6)

The above equation is true for M/M/1 systems but is unlikely to be completely accurate for the

model system. We will later examine, via simulation, the accuracy, sensitivity and error introduced

by this approximation. We can now rewrite Equation 5 as,

1
U "_ 1 • (7)

1+ z(1/p- 1+

Note that under the approximations we have made, the expected utilization is insensitive to the disk

service time distribution, S.

Since this is a closed system, the expected response time can be directly calculated from the
expected utilization:

E(R)- E(S)Lnulv (8)
The expected throughput in megabytes per second can be written as,

UN SU

MBS- E(S)' (9)

where SU is the size of the stripe unit. Future references to a specific analytic model will refer to

the above equations and to Equation 7 in particular.

3.4 Summary

1 basedIn this section we have derived a simple analytic model for disk arrays, U __ l+-_(1/p-l+.r)'
upon two approximations:

• E(_M1 ri) = (1/p- 1)E(R)/L,

• poE(R)/E(s)= 1.

With regard to the first approximation, we will show that it is very accurate and introduces very

small errors. The second approximation is more difficult to justify. While it is not an accurate

approximation for certain workloads, the error introduced into the analytic model is insensitive

to the accuracy of the approximation under those same workloads. The approximation introduces
errors on the order of :t:10%.

The model also contains an undefined parameter 7, a complex function of the model system's

parameters. We will empirically calibrate the value of 7 to a constant and show that this introduces

only small errors to the analytic model.



4 Validation of the Analytic Model

In this section, we calibrate and validate the analytic model developed in the previous section

via simulation. We show that the parameter 7 can be calibrated to a constant. The resulting

analytic model closely approximates the simulation results over the range of system and workload

parameters investigated.

4.1 The Disk Model

The disk model is based upon the IBM 0661 3.5 inch 320 MB SCSI disk drive. Figure 4 tabulates

the parameters and plots the seek profile of the simulated disk.

4.2 Simulation Parameters

The simulation parameters of interest are as follows:

• Input Variables.

N Number of disks in array.

SU Size of the stripe unit.

L Load, that is, the number of processes generating array requests.

SZ Array request size.

S Disk service time distribution (implicit in the disk model).

• Output Variable.

U Utilization. (Note that for the model system of interest, throughput is proportional to U

and response time is inversely proportional to U.)

Recall that,

n - Request size (number of disks/stripe-units accessed per request);
sz/s .

p - Probability that a request will access a given disk;

n/N.

4.3 Simulation Results

Figure 5 plots the utilization from a representative simulation run versus the utilization predicted

by Equation 7 for a disk array consisting of 17 disks and a stripe unit size of 32KB for four values

of 3' E {0,1,p(1- p),0.15). As previously mentioned, 7 - 0 when n E {1, N}, that is, when

SZ E {SU, NSU}; thus, we first try 7 = 0. As expected, Equation 7 with 7 = 0 models the

utilization of the system fairly well when n E {1, N}; however, the analytic model with 7 = 0

overestimates the utilization at other values of n. This is because 7 = 0 underestimates E(r0)

when n is between 1 and N. To get an idea for the sensitivity of the analytic model to 7, Figure 5

also plots the utilization of the simulation run versus the utilization predicted by Equation 7 over

the same range of input parameters with 7 = 1. The resulting analytic model is highly inaccurate.
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Figure 4: Disk Characteristics. The graph plots the seek time in milliseconds versus the seek

distance in cylinders. The curve is derived from the following formula:

0, if x=0seekTime = a(x-1)°'_+b(x-1)+c, if x>0

where x is the seek distance in cylinders and a, b and c are constants chosen to satisfy the single

cylinder, max stroke and average seek times. For the simulated disk, a = 0.4623, b = 0.0092 and
c=2.
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The bestresult is achievedwhen"_ = p(1 - p). This will make 7 -_ 0 at the boundaries when

n E {1, N} and somewhat positive elsewhere. In this case, 0.25 is the maximum value for "_ reached

at p = 0.5. The resulting correspondence between the analytic and simulated utilization is very

good. Unfortunately, using _/= p(1-p) introduces higher order dependencies with respect to p into

Equation 7. Consequently, we will try 7 = 0.15 to see if we can improve over our original choice of

7 = 0 without introducing higher order dependencies. The resulting correspondence between the

analytic and simulated utilization, while not as good as _/ = p(1 - p), is still good. Henceforth,

we will assume that 7 can be accurately modeled as a constant and where a specific value for "/is

needed, we will assume that _/= 0.15.

5 Error Analysis

In the derivation of the analytic model, we have made the following approximations:

• poE(R)/E(S) "_ 1,

• E(Ei= 1 ri) - (1/p- 1)E(R)/L,

• 7 __ 0.15.

A previous section has already shown that the above approximations result in an accurate analytic

model over a range of system and workload parameters. In this section, we examine the accuracy,

sensitivity and the error introduced by each approximation. Our methodology is to rewrite the

exact equation for utilization, Equation 2, in terms of variables a, _ and 7. If we could calculate

the values of these variables exactly, we would have an exact analytic model. We show that the

approximate analytic model, Equation 7, can be derived by substituting specific estimates for the

true values of the variables a, fl and 7. Thus, we can study how the approximations affect the

error in the analytic model by determining how inaccuracies in the estimated values for a,/_ and 7

contribute to the error in the analytic model.

5.1 Exact and Approximate Models

Let

--- poE(g)/E(S),
M

= r,)L/E(R),
i=l

"_ - E(ro)L/E(R).

Note that f_ __ E(M), the average number of array requests that are issued until an array request

that accesses a given disk is issued. Rewritting Equation 2 in terms of a, fl and -y we have,

1

V = 1 + _(fl + 7)" (10)

Note that Equation 10 is an exact equation for the expected utilization of the model system and

does not utilize any of the approximations used in deriving the analytic model.

11



Let

& -- 1,

,_ -- 1/p-1,

"_ = 0.15.

The above definitions for &, _ and "_, estimating the true values a,/3 and 7 respectively, directly

correspond to the three approximations we have made in deriving the analytic model. Substituting
^

&,/3 and "_ for a,/3 and 7 into Equation 10 results in the approximate analytic model given by
Equation 7 and denoted below as U:

1

0 _= . + . (11)1+ z(#

The primary question of interest in the following section is how errors in the estimators &,/_ and "_
affect the error of the analytic model, _'.

5.2 Propagation of Error

The previous section has shown that the approximate equation for utilization, Equation 7, can be

viewed as derived from the exact equation for utilization, Equation 2, by estimating the variables

a,/3 and 7. This section looks at how inaccuracies in the estimates of a, fl and 7 affect the error of
the analytic model.

V_Teknow that,
OU OU OU

dV = -_, d_ + -55 d# + _ dT. (12)

The above equation shows how small changes in c_, fl and 7 affects U. Analogously,

6U '_ -0-_-6& + --_ --_ 6_'. (13)

The above equation shows how small inaccuracies in &,/_ and "_ affect the error in U. For example,

the first term of Equation 13 shows how small inaccuracies in & affects the accuracy of U; unfor-

tunately, the first term of Equation 13 also depends on gr which depends on f) and _/. This means

that we may incorrectly calculate the error contributed by & due to inaccuracies in the other two
variables.

Because of the above drawback to using Equation 13 directly, we will instead use the following
equations as the basis of error analysis.

1 (14)
1+ z(# + 7)

1
U# -= (15)

Of ^ '_

1+ S(# + 7)

10"

The main advantage to using the these equations rather than Equation 11 is that errors in [_'of, U#

and U_ can be directly attributed to the inaccuracy in &, _ and _ respectively. Table 1 formally

defines the terms error, sensitivity, accuracy, relative error and relative accuracy.

12



Estimator I[ Error Sensitivity Accuracy Rel Err Rel Acc

& 6"_ - U 0v & - a _ _-_
0¢, U u

3 08- u o--z v u

o-_ v u

Table 1: Definition of Error, Sensitivity and Accuracy. The above definitions use the true values

U, a, fl and 7 which are unknown. We will use the simulated values for U, a, fl and 7 whenever the

true values are required for computations. Although the simulated values will never equal the true

values, the simulated values can be made to approximate the true values arbitrarily closely. For

comparison purposes, we will find it convenient to use relative error and relative accuracy rather

than error and accuracy directly. Note that just as the error is approximately equal to the accuracy

times the sensitivity, the relative error is approximately equal to the relative accuracy times the

sensitivity.

5.3 Simulation Results

Figure 6 plots the simulated and estimated U, relative error, relative accuracy and sensitivity
corresponding to each of the estimated parameters &,/3 and _. The first row of graphs in Figure 6

illustrates the overall relative error in the analytic model. This is roughly equal to the sum of the

relative errors due to &,/9 and "_ illustrated in the succeeding rows. Note that the overall relative

error of the analytic model is generally smaller than +5%. Before discussing the relative error,

relative accuracy and sensitivity of &,/_ and "_ individually, we make several general comments

concerning all three variables. First, the relative errors due to &,/9 and "_ rarely exceeds +10%.

Second, the relative inaccuracy rarely exceeds 4-1. Third, for the simulated parameters, the absolute

value of the sensitivity of all three variables is always less than one and is small in general. This

implies that the model is fairly robust and is insensitive to inaccuracies in the approximations used

to derive the model. Fourth, when the relative inaccuracy is high, the sensitivity tends to be low,

resulting in a small relative error. Fifth, the sensitivity of all three variables tends to decrease as
L increases.

The second row of Figure 6 illustrates the relative error, relative accuracy and sensitivity of

& and corresponds to the approximation poE(R)/E(S) -_ 1. Simulation shows that this is a

good approximation for small request sizes but is inaccurate for large request sizes; as request

sizes become large, poE(R)/E(S) approaches zero. Fortunately, the sensitivity a/so decreases with

increasing request size resulting in small errors. Note from Figure 6 that at the smallest request

size, the approximation becomes less accurate with increasing load. The absolute value of the

sensitivity also increases with increasing load but reaches a maximum of approximately 0.35 then

decreases. This leads us to believe that the analytic model will continue to display relatively small

errors at higher loads.

The third row illustrates/_ and corresponds to the approximation E(_M1 rl) _'2 (1/p- 1)E(R)/L.

As previously stated, we believe this to be a very good approximation which evidence now confirms.

In the graph plotting U versus 0_, the two sets of lines are almost indistinguishable. The relative

error is generally less than 4-1%.

Finally, the fourth row corresponds to the approximation 7 -_ 0.15. In addition to the general

comments a/ready made, we note that the error introduce by "_ tends to cancel out the error

13
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introducedby &. This is not surprisinggiventhat q wasempiricallycalibratedto reducethe
overallerror in the analyticmodel.

5.4 Summary

In this sectionwe examinedthe error introducedby the approximationsmadein deriving the
analytic model. We examinedthe accuracyand sensitivityof eachapproximation.While some
of the approximationsaregrosslyinaccuratefor certainworkloads,this doesnot introducelarge
errorsbecausethe modelis insensitiveto the approximations at such workloads. Finally, because

the model is generally insensitive to inaccuracies in the approximations, it is reasonably robust.

6 The Optimal Stripe Unit Size

In this section, we will use the analytic model to derive an equation for the optimal stripe unit

size, the stripe unit size that maximizes throughput in megabytes per second. The equation for

the optimal stripe unit size is useful as a rule of thumb in configuring disk arrays and also provides

valuable insights into the factors that influence the optimal stripe unit size. Given today's disk

technology, the optimal stripe unit equation is most useful for workloads consisting of I/O requests

that are a couple of hundred or more kilobytes in size. Miller [11] has shown that such workloads

are typical of scientific applications. For such workloads, we have found that there is typically a

10-20_ degradation in performance when the stripe unit is a factor of two smaller or larger than

the optimal size.

In addition to deriving the equation for the optimal stripe unit size, we will show that the stripe

unit size that maximizes throughput also minimizes response time. Note, however, that maximizing

throughput is not the same as maximizing utilization; just because a disk is busy does not mean that

it is doing useful work. The fundamental tradeoff in selecting a stripe unit size is one of parallelism

versus concurrency. Small stripe unit sizes increase the parallelism available for servicing a single

request by mapping a request over a larger number of disks but reduce concurrency because each

request uses a greater number of disks [4].

6.1 Derivation

We will derive the equation for the optimal stripe unit size from Equation 9. But first, because the

disk service time, S, is dependent on the stripe unit size, b'U, we must formulate a simple model

that makes this dependency explicit. Recall the definition for the following disk parameters:

• P is the average positioning time (seek -t- rotational latency).

• X is the sustained data transfer rate (this is the rate that the disk head reads data off of the

disk platter).

Then,

E(S) = P + SU/X. (17)

Note that n, the number of stripe units per request can be calculated as follows:

n = sz/sv. (is)
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Substitutingequations7, 17and18 into Equation9 andsimplifyingwecanwrite the throughput
in megabytessecondas,

LNXSUSZ

MBS = (PX + 5U)(NSU + SZ(L- 1 + '7))" (19)

Solving for the local maxima in the above equation as a function of SU (7 is assumed to be a

constant) we get the following equation for the optimal stripe unit size:

Jpx(z- 1+  )sz
opt SU V -y (20)

Repeating the above procedure to minimize response time starting from Equation 8 results in the

same equation for the optimal stripe size; thus, the stripe unit size that maximizes throughput also

minimizes response time and is given by Equation 20.

The following remarks can be made about Equation 20:

Changes to the system that increase the effective load, that is, an increase in L, an increase

in SZ, or a decrease in N, favor larger optimal stripe units. The opposite is true for changes
that decrease the effective load.

In our model system, the optimal stripe unit size is dependent only on the product PX, the

relative rate at which a disk can position and transfer data, and not on P or X independently.

If you replace the disks with those that position and transfer data twice as quickly, the optimal

stripe unit size remains unchanged [4]. In this respect, the selection of an optimal stripe unit

size is a trade-off between the disk positioning time and the data transfer time.

6.2 Validation

As a further validation of the analytic model and of Equation 20 in particular, we compare the

analytic values for the optimal stripe unit size with empirically determined values. Figure 7 plots

the analytically determined optimal stripe unit sizes versus the empirically determined optimal

stripe unit sizes on a log-log scale. The shaded regions on the figure represent optimal stripe unit

sizes that can be ruled out for the following reasons. First, throughput when 575- < SZ/N for fixed

SZ is less than or equal to the throughput when 5U = SZ/N. At this stripe unit size, requests

are being distributed uniformly across all disks and it is not possible to increase parallelism or

concurrency by reducing the stripe unit size. Second, throughput when SU > SZ for fixed SZ is

identical to when 5U = SZ. In this case, the request already fits completely within a single disk

and there is no advantage or disadvantage to increasing the stripe unit size. We have empirically

verified the above two facts. Thus, SZ/N < SU < SZ. For comparison purposes, Figure 8 adds the

optimal stripe unit sizes predicted by Chen [4]. Note that Chen's model assumes that the optimal
stripe unit size is independent of the request size.

To get a feel for the sensitivity of performance to the choice of stripe unit size, Figure 9

individually plots each group of lines from Figure 8 with vertical bars to indicate the range of

stripe unit sizes providing 95% of the throughput of the optimal stripe unit size. Note that there

is fairly good correlation between the analytically and empirically determined values for optSU. In

all cases except when L = 1 and request sizes are small, the optimal stripe unit sizes determined
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Figure 7: Analytic vs. Empirical Optimal Stripe Unit Sizes. N = 16; SU = 32KB; L E

{1, 2,4, 8, 16,32); Each pair of lines is labeled with its corresponding value of L. Ol_su = Optimal

stripe unit size in kilobytes. The graph may appear odd at first because the beginning and end of

the individual lines overlap at the edges of the shaded regions.
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Figure 9: Optimal Stripe Unit Sizes with 95% Performance Intervals. N = 16; SU = 32KB;

Oitsu = Optimal stripe unit size. Stripe unit siz_within the solid vertical bars provide 95_ of the

performance of the optimal stripe unit size indicated by the oblique thin solid line.



by both Chen's model and our model lie within the 95% performance intervals. This is remarkable

given the different simulation methodologies and criteria used in selecting the optimal stripe unit

size and indicates that the optimal stripe unit size is a robust property.

6.3 Summary

In this section, we derived an equation for the optimal stripe unit size and validated it via simulation.

The stripe unit size that maximizes throughput also minimizes response time and is given by

optSU = _/_. We showed that the optimal stripe unit size is dependent only on the

relative rates at which a disk can position and transfer data, PX. Our equation for the optimal

stripe unit size agrees well with Chen's [4] equation.

7 Summary and Future Work

We have derived, validated and applied an analytic performance model for disk arrays. _re modeled

disk arrays as a closed queueing system consisting of a fixed number, L, of processes continuously

issuing requests of a fixed size, n, to a disk array consisting of N disks. The expected utilization
1

of the model system, U, is approximately 1+-_0/p-1+0.15) where p = n/N is the size of the request
as a fraction of the number of disks in the disk array. We directly derived the expected response

time and throughput in megabytes per second as _ and _ _J respectively where E(S)is the
expected service time of a disk request. We showed via simulation that the utilization predicted

by the analytic model is generally within =t=5% of the simulated values. We examined the error,

accuracy and sensitivity of each approximation made in the derivation of the analytic model to

better understand the validity and limits of the model. Finally, we applied the analytic model to

show that the optimal unit of data striping simultaneously maximizes throughput and minimizes

response time and is equal to _/_ where P is the average disk positioning time, X is

the average disk transfer rate and SZ is the request size.

There are several major areas for future work with respect to the analytic model presented here.

First, one can extend the workload model to handle non-constant distributions of request sizes and

something similar to CPU think time, where the processes, instead of simply issuing I/O requests,

would alternate between computation and I/O. Second, one can extend the types of disk arrays

to which the analytic model can be applied. In particular, it would be highly desirable to model

RAID, Redundant Arrays of Inexpensive Disks [13], systems. Finally, the analytic model can be

applied to other problems in the design and configuration of disk arrays.
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